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l, We shall consider a continuous medium, 1n which thr free energy F
and other thermodynamic potentials (internal energy y , entropy S etc.)
are functions of a system of parameters

T, p, gij' viPr By Vi (1)

Here, I 1is the temperature, p 1s the density, g!! are are the contra-
varlant components of the metric tensor in the Lagrangian system of coordi~
nates ¢£! at the time under consideration, Vi? are the components of the
vector gradp in the system g!, n, are the components of some vector (for
example, the vector describing the anisotropy of the medium [1]), and vy
are the components of the gradient of this vector. 7

Such a medium can be considered as a generalizatlon of the model of a
compressible anisotropic fluid. Elastic media of theis kind have been intro-
duced in [2 and 3].

We shall also assume, that for all processes in the medium under consider-
ation
dq'® = Tds (dg'® 1s the external heat influx) 2

2, It is easy to show, that 1f the free energy r depends on Vi and
V%, the equation of the first law of thermodynamics for an elementary par-
ticle of the medium cannot be written in the classic form

dE + dU = dA'® 4 dq'® 3

Here, £ 18 the kinetlc energy and dA® 1s the elementary work of the
external forces,

Actually, from (3), using (2) and assuming that the stress tensor p!!
1s symmetric, we obtain the equation of the heat influx

i)
dF = 1."_)_ de;; — S dT (4)
If we use the reiations valid in a Lagranglan system of coordinates,
dp _ o i % dg® _ o k15 98 5
rr Pe” 5 dt £ o )

Equation (4) can be written as
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oF o oF .. OF oF
— _ ij ki 1j 7% _ _
aT 4T (pg Fﬁ;+ %"¢ agkz)d"ﬁ Tave dyp +
oF oF pis
-+ 5‘;{ dn{ -+ 3 _V—jni de"i = Tdafi — §dT (6)

Since Equation (6) must be satisfied for all possible processes in the
medium under consideration, and F and S depend only on the parameters
(1) and not on the rate of change of these parameters, then either there
exlsts some, generally speaking, nonintegrable relations between the differ-
entlals dy,p, dy.n, dT, dey; and dn; or, if such relations are absent, the
following equalitfes are always true

aF oF
5=  Gon=0 Y]
Ivp A

It 1s easy to see, that 1if there exist general relatlions between the dif-
ferentials of the parameters (1), or if (7) 1s satisfied, but not identically,
then the system of equatlons for the determinatione or the vector n in such
a medium willl be overspecified. This means that only displacements of some
particular types can exist in the medium. However, we are tonsidering here
media in which any continuous displacements are possible. For these, 1t
follows from (6) that Equations (7) are satisfied identically, i.e. F is
independent of ViP and V;%. This contradicts assumption (15 and proves
that, for media with parametric relations (1), the first law of thermodynam-
ics cannot be written in the form (3).

3. It is known [4], that in some cases (for example, 1f polarization and
magnetization of the medium in the presence of an electromagnetic fleld are
considered) we must add to the right-hand side of Equation (3) another influx
of energy, different from dA( and ¢4'”, The arguments of Section 2 above
show, that a change of the free energy, connected only with a change of the
gradient of density, for example, cannot be brought about by mechanlcal work
of macroscoplc forces and heat influx to the particle, but be connected with
an additional energy influx of a different nature. We shall denote this
energy influx per unit mass by gg**, and write the heat influx equation in
the form (*) "
dF = 5’5— dey; — S dT 4 dg** ®)

4, It is natural [4]to make the following assumption about dg**.
1) The energy influx gg** takes place through the surface of the par-

ticl 1.e. )
one p dg** = div Q dt = v, Q¥dt 9)
2) Vector § becomes zero, if all parameters (1) remain constant in
the particle, i.e.
Q*dt = wkaT  A¥;dg" 4+ M*dy;p + N¥dn; + P dyn, (10

Here we did not include a term of the type A¥jp , since, although »p
and g!! are independent parameters, thelr differentials are related by a
general equation, namely 2dp = pgﬁdg”.

Using (9), (10) and (5), we can rewrite the heat influx equation

oF oF . ;1 OF aF .
o7 4T — (p a0 €7+ 2g"'g" P VP By g“)tiei; -

) (11)
aF. .. oF oF pY
— P v gv v, deg; + an, dn;+ e dyjny= — S dl + - de;; +

+ % vk T + %x" vy dl — % vA¥ dey — % A¥ g de, 4

*

*) The necessity of introducing dq* was fully discussed in Sedov's paper
at the 11th International Congress for Applied Mechanics, in Munich, 1964,
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. . 1 . ( 11 )
+% VM dy;p + —;- M¥ g, dy,e +% Vi N*dn, + ;N’“ Vidn;+  cont.

1 I3 1 k..
—|—? v, Prt dyn; + = Pil g dyn,
Here, the following equation was also used:

_ dy,p = — Vipgkjdek' - pgkj Videy; (12)

From (11) we can obtain all the defining relations for our medium, with
the assumption that x*, A,ﬁ M¥ N¥ and pkit are independent of the rate of
change of the para.meters (1), and between the differentials, appearing in
(11), there are no general relations for the medium under consideration.

For the determination of the defining equations we shall also use the
followlng relations where V; 1s the covarlant differentiation on £! and
d 1s the differential on time with constant #!

dVi0 = V,dp
dv,e = V,de;; — (& F Lhls + & L) vyde,,
dVy Vip = VdV;p) — VoLEY vyde,,
dyn, = v,dn; —n’ p‘"vp ar
Here
2Lfg‘r 61’(6‘16 T+ 8 q5')+61’(6 q5r+5q6 "—8§ p(6q6'+6‘76¢') (13)
(0x® are Kronecker symbols)

Equations (13) become obvious, if we consider that for time differentials
the Christoffel symbols T¥, in the Lagrangian system of coordinates are

dl‘?,— =1 ViVj”k dt = gk‘ (Vids]*, + v; dejy — v,dei,-) = Lf;ir "’V de
With the above assumptions, the requirement that the heat influx Equation

(11) should be satisfiled for £ll processes in the medium, leads to the defin-
ing edquations

MM =0,  PH=0 x¥=0 49

5o o (15)

Ni=p a"v"jni %:—é— v, V5 (16)

I w

P: (P 6391; + VP aavEP) g — 28"”6’” kl T = A e

If the free energy 1s known as a function of 1ts parameters, Equations
(14), (16) and (17) can be used to calculate the energy influx dq*

1 ( 9F oF
dg** = ry Vi (P v P) P+ 353 aV,p dv,p + an dn;+
ar oF X
+‘5—V_]"Z dvkni — F Vk (p an"' n Lp;]s) dB (19)

We can see from (19) that, in particular, in the deformation of media in
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which F does not depend on ViP, but depends on Vi, there will, in gen-
eral, be a nonzero A4g** even in processes with dn;, =0 and dvkni=:0.

Equations (17) and (18) show that the stress tensor in such a medium is
not spherical, which 1s also true for conditions of equilibrium. Therefore,
a medlium in which the free energy at a given time depends not only on the
density, but also on the gradient of the density, is not a fluld in the usual
sense,

We can also note that the dependence of the free energy on the gradients
of density and vector n , leads to the dependence of the stresses, in the
general case, on the gradlents of all the parameters (1), in particular on
the second space derivatives of p and n . This dependence on the second
derivatives is linear. The lnvestigation of media (*?, in which the free
energy depends on the time derivatives of the density (5], also shows that
the stresses depend linearly, to a large extend, on the time derivatives of
p . In each case, thils conclusion js significantly connected with the assump~
tion that dg** i1s the energy influx through the surface (or is absent), and
also with the reversibility condition (2).

5, To exhibit the characteristic peculiarities of the mechanical behavior
of media, in which the energy depemds on the gradient of density, we shall
investligate the following simple model, Let ~» depend only on T, p, g!'!
and y.p, 1.e. .

F=F(T,p,p), p=7glyp v (20)

In addition assume that K2

where p = F, (p, T) is the free energy of a mass unit of ideal gas and *2
i1s a constant., The dimensions of #° are the dimensions of the product of
with the square of some length ¢ . Thus, in a number of parameters,

describing the medium, we get a linear behavior [6]. 1In the statement of
specific problems there 1s usually involved some length 7 , describing the
obJects relevant to the problem. Apparently, the improvement of the 1deal
gas model, given by Equation (21), can become effective in problems where
12~ 2 or |2<Z [

According to (15), the expression for the entropy of the medium will
colncide with the expression for the entropy of the ideal gas, and, in par-
ticular, the adiabatic condition (coinciding here with the condition
S = const) will be T = ¢p¥!

We shall also write the equations for the stress tensor componenets
(coinciding with Clapeyron's ecation for » = 0)
ii— _ (por 4 2 a ) gii R iy
pY = —Hp +—p—u—kvavpg v (22)

and the closed system of equations, describing the adiabatlic motions of the
medium with no body forces in an Eulerian system of coordlnates

T Pk =0 (23)
dvt 1y 2K R N o
pE:_APY Lyt = v'ev,evie e v;vevip — '_p'VIPV]VJP + kryiy;vip
RT
(A = ;T)o*‘: = Gonst) (24)

consider small (P ==pPo+ P’ P’ and v' and their derivatives being small)
unidimensional motions with plane waves. Obviously, with such an approxima-
tion we can only obtaln longltudinal waves in the medium. Thls 1s connected
with the fact, that to a first order approximation the stress tensor is here
spherical.

*) Such medla were investigated in Eglit's dissertation, MGU, 1962.



Generalization of the model of an ideal compressible fluid 399

For longltudinal waves, travelllng along the x-axis, we get Equation

é%p’ d%p o’
T W G R w (@ =1RTY @)

Here g, is the sound veloclty in the ideal gas.
Equation {25) has a solution of the form exp [i (@z —o?)], and the wave-

length is connected with the frequency of the dispersion equation

O =Fa Va+ Ka? (26)

Hence, with the consideration of the dependence of the free energy on the

gradlent of denslty we find a sound dispersion in the medium, This effect
exists for short waves (i%a? ~ qg?) and not for long ones (k%% <€eg?). By measur-
ing the dispersion of short waves we can find the magnitude of #*® for the
medium under consideration.
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